Autonomous Racing  1
f1tenth Project Group of Technical University Dortmund, Germany
parameters_policy_gradient Namespace Reference

Classes

class  Policy
 

Variables

list ACTIONS
 
 ACTION_COUNT = len(ACTIONS)
 
int LASER_SAMPLE_COUNT = 8
 
 MODEL_FILENAME
 
bool CONTINUE = False
 
float DISCOUNT_FACTOR = 0.99
 
int MAX_EPISODE_LENGTH = 5000
 
float LEARNING_RATE = 0.001
 

Variable Documentation

parameters_policy_gradient.ACTION_COUNT = len(ACTIONS)

Definition at line 11 of file parameters_policy_gradient.py.

list parameters_policy_gradient.ACTIONS
Initial value:
1 = [(-0.8, 0.1), (0.8, 0.1), (0.5, 0.2),
2  (-0.5, 0.2), (0, 0.2), (0, 0.4)]

Definition at line 9 of file parameters_policy_gradient.py.

bool parameters_policy_gradient.CONTINUE = False

Definition at line 23 of file parameters_policy_gradient.py.

float parameters_policy_gradient.DISCOUNT_FACTOR = 0.99

Definition at line 25 of file parameters_policy_gradient.py.

int parameters_policy_gradient.LASER_SAMPLE_COUNT = 8

Definition at line 16 of file parameters_policy_gradient.py.

float parameters_policy_gradient.LEARNING_RATE = 0.001

Definition at line 29 of file parameters_policy_gradient.py.

int parameters_policy_gradient.MAX_EPISODE_LENGTH = 5000

Definition at line 27 of file parameters_policy_gradient.py.

parameters_policy_gradient.MODEL_FILENAME
Initial value:
1 = os.path.join(RosPack().get_path(
2  "reinforcement_learning"), "policy_gradient.to")

Definition at line 18 of file parameters_policy_gradient.py.