Autonomous Racing  1
f1tenth Project Group of Technical University Dortmund, Germany
parameters_q_learning Namespace Reference

Classes

class  NeuralQEstimator
 

Variables

list ACTIONS = [(-0.6, 0.2), (0.6, 0.2), (0, 0.2)]
 
 ACTION_COUNT = len(ACTIONS)
 
int LASER_SAMPLE_COUNT = 8
 
 MODEL_FILENAME
 
bool CONTINUE = False
 
float DISCOUNT_FACTOR = 0.99
 
int MAX_EPISODE_LENGTH = 500
 
int MEMORY_SIZE = 5000
 
int BATCH_SIZE = 128
 
float LEARNING_RATE = 0.0001
 
float EPS_START = 1.0
 
float EPS_END = 0.3
 
int EPS_DECAY = 10000
 

Variable Documentation

parameters_q_learning.ACTION_COUNT = len(ACTIONS)

Definition at line 13 of file parameters_q_learning.py.

list parameters_q_learning.ACTIONS = [(-0.6, 0.2), (0.6, 0.2), (0, 0.2)]

Definition at line 12 of file parameters_q_learning.py.

int parameters_q_learning.BATCH_SIZE = 128

Definition at line 36 of file parameters_q_learning.py.

bool parameters_q_learning.CONTINUE = False

Definition at line 27 of file parameters_q_learning.py.

float parameters_q_learning.DISCOUNT_FACTOR = 0.99

Definition at line 29 of file parameters_q_learning.py.

int parameters_q_learning.EPS_DECAY = 10000

Definition at line 43 of file parameters_q_learning.py.

float parameters_q_learning.EPS_END = 0.3

Definition at line 42 of file parameters_q_learning.py.

float parameters_q_learning.EPS_START = 1.0

Definition at line 41 of file parameters_q_learning.py.

int parameters_q_learning.LASER_SAMPLE_COUNT = 8

Definition at line 17 of file parameters_q_learning.py.

float parameters_q_learning.LEARNING_RATE = 0.0001

Definition at line 37 of file parameters_q_learning.py.

int parameters_q_learning.MAX_EPISODE_LENGTH = 500

Definition at line 31 of file parameters_q_learning.py.

int parameters_q_learning.MEMORY_SIZE = 5000

Definition at line 34 of file parameters_q_learning.py.

parameters_q_learning.MODEL_FILENAME
Initial value:
1 = os.path.join(RosPack().get_path(
2  "reinforcement_learning"), "q_learning.to")

Definition at line 20 of file parameters_q_learning.py.