4 from collections
import namedtuple
6 from circle_fit
import hyper_fit
8 Point = namedtuple(
"Point", [
"x",
"y"])
17 points = np.zeros((sample_count, 2))
18 angles = np.linspace(start_angle, end_angle, sample_count)
19 points[:, 0] = self.center.x + np.sin(angles) * self.
radius 20 points[:, 1] = self.center.y + np.cos(angles) * self.
radius 24 return atan2(point.x - self.center.x, point.y - self.center.y)
27 x = point.x - self.center.x
28 y = point.y - self.center.y
29 distance = (x**2 + y**2) ** 0.5
31 self.center.x + x * self.
radius / distance,
32 self.center.y + y * self.
radius / distance
37 center_x, center_y, radius, _ = hyper_fit(points)
def get_angle(self, point)
def __init__(self, center, radius)
def get_closest_point(self, point)
def create_array(self, start_angle, end_angle, sample_count=50)